Year	Торіс	Knowledge	Skills
7	Cells	Animal and plant cells, specialised	Beginning to use a microscope and
		cells, unicellular organisms and	learning how they work, preparing
		diffusion.	simple slides, safely handling
			chemicals and equipment, using
			basic laboratory equipment e.g.
			beakers, stopwatches, drawing
			labelled diagrams, introduction to
			answering 6 mark questions, using
			new scientific terminology
	Structure and	Organisation in organisms, gas	correctly. Working out how mass affects the
		exchange, breathing, skeleton,	force needed to make a muscle
	Function of Body	joints, muscles.	work, using Newton meters,
	Systems	j ,	recording data in a simple table,
			drawing labelled diagrams,
			answering 6-mark questions, using
			new scientific terminology
			correctly, measuring volumes.
	Reproduction	Adolescence, internal and	This topic provides lots of
		external fertilisation, human	opportunity for questions and
		reproductive systems, fertilisation	discussion, allowing students to
		and implantation, development	develop respect and responsibility.
		of the foetus, menstrual cycle,	Line and bar graph drawing and
		plant reproductive systems,	error spotting, calculating means
		fertilisation and germination,	and percentages, introducing ideas
		seed dispersal.	of accuracy and precision, identifying variables in an
			investigation, beginning to plan
			simple methods.
8	Health and	Food groups and healthy eating,	Using a Bunsen burner to burn
0	Lifestyle	energy from food, digestive	food, food tests and identifying
	Lincstyle	system, enzymes, drugs, alcohol,	unknowns, following complex
		smoking.	instructions, answering 6 mark
			questions, using new scientific
			terminology correctly and
			discussion of lifestyle choices and
			their negative impacts on health.
			This topic includes some more
			extended writing tasks to develop
		Photosynthesis, structure of a	literacy skills, graph drawing.
	Ecosystem	Photosynthesis, structure of a leaf, anaerobic and aerobic	Practical skills revisited including using Bunsen burners and
	Processes	respiration, chemosynthesis,	microscopes. New practical
		fertilisers, food webs and chains,	techniques of sampling using
		bioaccumulation, population	quadrats, introduction to writing
			topic includes some more
			extended writing tasks to develop
		bioaccumulation, population changes and ecosystems.	risk assessments, identifying variables, drawing tables. This topic includes some more

			literacy skills and drawing labelled
	Adaptation and Inheritance	Predator-prey relationships and interdependence, adaptations, variation, DNA, theories of evolution, natural selection and extinction.	diagrams, graph drawing. More extended writing/reading on the history of how scientists worked together to discover DNA, lot of opportunities for discussions and evaluations of scientific theories and evidence for and against them whilst also gaining an appreciation that there are different religious views too. Continuous and discontinuous variation,
9	Cell Structure and Transport	Electron microscopes and general microscopy, eukaryotic and prokaryotic cell structure, specialised cell structures, orders of magnitude, roles of diffusion, osmosis and active transport in the movement of materials within and between cells, adaptations to increase the rate of transport in and out of cells.	Using microscopes, microscope drawings, calculating magnification, drawing scale bars, making slides, converting between units, first examples of GCSE style exam questions, surface area to volume ratio calculations, drawing graphs with negative axis and using lines of best fit to make predictions, literacy exercise to analyse microscopy vocabulary. RP 1 + 3.
	Cell Division	The role of DNA, chromosomes, genes in a cell, how cells divide by mitosis, differentiation, cloning, stem cells.	Microscope drawings, first attempt at GCSE 6-mark question – factual recall, analysis and evaluation of advantages and disadvantages of contentious issues.
	Enzymes and Digestion	Tissues, organs, organ systems, digestive system, structure of biological molecules, role of enzymes in digestion and factors that affect them, bile and the liver.	Practical complexity increasing to include multiple conditions and repeats, further attempt at 6-mark question (still factual recall), extension activity offers opportunity to use A Level vocabulary in a scaffolded way. RP 4 + 5
	Organising Animals and Plants	Blood, double circulatory system, valves, blood vessels, detailed structure of the heart, gas exchange system in mammals and plants, organisation and transpiration in plants.	Observation of heart dissection (provides introduction to sharps handling).
	Non- Communicable Disease	Lifestyle factors, causal mechanisms, cancer, smoking and CV disease, lung disease and the effect on foetuses, diet, exercise, type 2 diabetes, alcohol and the effect on the liver, brain and foetuses, carcinogens, stents,	Analysis of relative sizes of different risks to health, analysis of large data sets (population level health risks and effects), interpreting data in terms of correlation versus causation,

	artificial hearts, valves and pacemakers, statins,	calculating BMI, evaluation of various slimming schemes. Analysis and application of knowledge to explain various treatments for cardiovascular disease, evaluation of their benefits and risks
Respiration	The biochemistry of respiration, effects of exercise, anaerobic respiration, metabolism, the role of the liver in oxygen debt.	Balanced symbol equations, planning an experiment, analysis of data collected, cardiac output calculations, efficiency calculations (extension).
Adaptations a Interdepender		Use of mean, mode, median, significant figures, evaluating fieldwork methods, calculating index of diversity (extension). RP 9
10 Nervous Syste	M Key elements of control systems, structure and function of nervous system, receptors, co-ordinators, effectors, reflexes, the brain, the eye and focusing, near and short sightedness,	Further practice at 6-mark questions – factual recall with some application, modelling the synapse, evaluation of different methods of measuring reaction times, planning own experimental methods and evaluating reliability and accuracy. RP 7
Communicable Disease	Causes of ill health, types of pathogen, binary fission, aseptic technique, reducing the spread of disease, examples of disease including measles, HIV, salmonella, gonorrhoea, malaria, immunity and the role of white blood cells, vaccination, drug discovery and testing including penicillin, monoclonal antibodies.	Aseptic technique, interpret data on graphs about health, measure growth of bacteria, analyse exponential graphs, critical review of the testing of new medicines. RP 2
Reproduction and Inheritan	the genome, gene expression and protein synthesis, mutations, rules of inheritance and Punnett squares, inheritance of gender, family trees, polydactyly, cystic fibrosis, screening for genetic disorders.	Literacy skills when analysing text about sexual and asexual variation, flower dissection (handling sharps), evaluation of benefits and risks of different methods of embryo screening, drawing Punnett squares.
Variation and Evolution	Environmental and genetic variation, natural selection,	Calculate bacterial population growth, evaluate advantages and

	Photosynthesis	selective breeding, methods of cloning (cuttings, tissue cloning, embryo cloning, adult cell cloning) and uses of cloning. Producing GMO. Ethics of these technologies. Describe photosynthesis in terms of reactants, products, limiting factors and conditions, adaptations of leaves, uses of glucose in plants, examples of plant disease including tobacco mosaic virus, rose black spot, mineral deficiencies, plant defence responses.	disadvantages of various types of cloning, practice 6 mark exam questions (analysis and evaluation). Lines of best fit and gradients, writing risk assessments, 6 mark exam question practice (experimental methods/results), balanced symbol equations. RP 6
Y10 Rota topic	Genetics and Evolution	The work of Mendel, the theory of evolution by natural selection and the evidence for it, the ideas of Lamarck, Wallace and Darwin, speciation, the formation of and importance of fossils, causes of extinction, antibiotic resistance in bacteria as an example of evolution, classification systems and how they have changed over time.	Evaluation of the strength of evidence to support various theories, literacy skills when analysing text about Darwin, interpretation of complex graphs, considerations of different viewpoints through history.
Y11 from 2023	Hormones	What hormones are, role of pituitary gland, role of hormones in maintaining blood glucose concentration, diabetes, thyroxine, negative feedback, puberty, reproductive hormones and the menstrual cycle, contraception, treating infertility, plant hormones and responses, uses of plant hormones. The use of genetic engineering to make insulin.	Investigation planning, interpreting complex graphs, evaluate different methods of contraception, consider different viewpoints on IVF, literacy skills – using key scientific vocabulary. Evaluate the use of genetic engineering to make insulin. RP 8
	Homeostasis	Regulation of body temperature, removal of waste products, role of kidneys in regulation of blood water and mineral ion content, kidney dialysis and transplants. The use of therapeutic cell cloning as a potential source of kidneys for transplant.	Calculating percentage changes, evaluating models, evaluating different treatments for kidney failure, kidney dissection (sharps handling). Evaluate the use of therapeutic cell cloning.
	Organising an Ecosystem	Feeding relationships and the importance of photosynthesis, predator-prey relationships, decay and the recycling of materials, particularly carbon and	Interpreting complex graphs, experiment planning, balanced symbol equations, percentage change and efficiency calculations. RP 10

Y12	Humans and the Environment	water, factors that affect the rate of decomposition, trophic levels and pyramids of biomass, biomass and energy transfers between trophic levels. Importance of biodiversity, how humans pollute the air, land and water, the causes and effects of deforestation, peat bog destruction and global warming, the impact of environmental changes of the distribution of organisms, actions humans can take to protect biodiversity, food security and factors that affect it, methods to increase the efficiency of food production including intensive versus extensive farming, sustainable fishing, mycoprotein. Topic introduces various	Data analysis, evaluation of issues surrounding climate change, evaluate the benefits and risks of different methods of food production and genetic technologies, graph gradient calculations, analysis of issues surrounding and evaluation of solutions to global food production.
Both teachers	Induction	techniques. The main focus is to get students interested in Biology, talking to each other and to boost confidence in the lessons.	curves, succession, observational and team work skills.
Y12 Teacher A	Cells	Eukaryotic and prokaryotic cell structure, units used to measure cells, how electron microscopes work and are used, the size and function of eukaryotic organelles, how to rearrange I=AxM to calculate image size, actual size or magnification from information provided, organisation of cells into tissues, organs and organ systems, the cause of cholera symptoms and its treatment.	Microscope and observational skills, preparing samples for cell fractionation, observing the results, how to calibrate a stage micrometre with the eyepiece graticule, converting between units, practise following instructions for the gram stain procedure.
	Mitosis	The cell cycle, how cancer develops, how drugs target cancer cells to disrupt mitosis, binary fission in prokaryotic cells, viral replication using host cell organelles.	Preparing stained slides of root tips from which to record and identify stages of mitosis observed, calculating the mitotic index (the percentage of visible cells in each stage), the statistical test chi squared.
	Cell Transport	Structure and functions of the plasma membrane, simple and facilitated diffusion, osmosis in terms of water potential, active transport and endo/exocytosis, maintaining water balance and	Using a colorimeter, considering how to control key variables.

		l
DNA and Protein Synthesis	turgidity in cells, absorbing glucose from the small intestine by co-transport dependent on the sodium-potassium pump, oral rehydration therapy. How genetic information is used to make specific proteins in cells, DNA structure, chromosome structure, the human genome project, the stages of protein synthesis and the chemicals	Encouraging students to apply their knowledge and take an interest in recent developments in genetic research.
Immunology*1	involved. Introduction to infectious diseases with examples, overview of body defences (specific, broken down into humoral and cell- mediated, and non-specific), phagocytosis, roles of b cells, t cells, helper t cells, cytotoxic t cells, memory cells, plasma cells in the specific immune response; types of immunity and vaccines; antigenic variability; HIV structure and progression of the disease; monoclonal antibody production and use, specifically in ELISA as a test for HIV.	Data analysis to assess effectiveness of vaccines/treatments/drugs in preventing/treating infectious disease.
Genetic Diversity	DNA mutations, cystic fibrosis, the mechanisms that produce variation, natural selection, directional and stabilising selection, antibiotic resistance, the binomial naming system, phylogenetic hierarchy, courtship behaviour, amino acid, RNA and DNA sequencing, index of diversity.	Practicing using power numbers, aseptic technique, reviewing exponential growth, practising using logs, calculating standard deviation.
Energy Transfers in Ecosystems	The organisation of ecosystems in terms of trophic levels, how energy is transferred from one trophic level to another, the various mechanisms by which energy is lost between trophic levels, net and gross primary productivity, what intensive farming is and how it increases	Mathematical skills, including working with standard form, percentages and conversion of units, evaluating various agricultural practices, taking into account productivity, profit, environmental issues and animal welfare.
	farming is and how it increases productivity/profits, integrated pest management. Review of GCSE ecological	Understanding and using

		A Loval words: nicha hiama	various acological sampling
	&	A Level words: niche, biome, carrying capacity; study if abiotic	various ecological sampling techniques (random sampling,
	S	and biotic factors and their	transects, mark-release-
	Biology	impact on population sizes with	recapture), evaluating the
	Fieldwork	predator-prey relationships and	limitations of each technique,
	Course	bacterial growth curves as specific examples; theory of	choosing and using statistical tests to analyse experimental data,
	course	different ecological sampling	writing methods, identifying and
		techniques; succession,	controlling variables, using a range
		conservation, in situ introduction	of equipment to monitor abiotic
		to various biological organisms	factors, writing risk assessments,
		e.g. limpets, moss, lichen, holly	chromatography, drawing results
		leaf miner, xerophytes, freshwater invertebrates.	tables, carrying out own research, using dichotomous keys to identify
		Testiwater invertebrates.	and classify organisms, energy
			transfer calculations, using choice
			chambers.
Y12	Carbohydrates	Biological molecules are the	Following instructions, using a
Teacher	and Lipids	fundamental building blocks of all	serial dilution to produce a
В		cells and organisms. There are several key molecules found in all	calibration curve, working methodically, developing the
		cells that react with each other in	ability to 'multi-task' (carrying out
		similar ways. These biologically	one test while preparing for the
		important molecules are all	repeat test is a good example of
		carbon-based and the ones	this), identifying the hazards and
		covered in this topic are	the risks associated with those
		carbohydrates and lipids. Many biological molecules, including	hazards, writing a risk assessment, constructing tables and recording
		carbohydrates, are polymers. This	data.
		means they are long molecules	
		made up of lots of smaller	
		building blocks.	
		In this topic students will learn	
		about some of the different types of biological molecules	
		(monosaccharides, disaccharides,	
		polysaccharides, glycerol, fatty	
		acids, triglycerides,	
		phospholipids) and their roles in	
	Drotoine and	cells. Protoins are polymors or amino	Following instructions, working
	Proteins and	Proteins are polymers or amino acids. This means they are long	Following instructions, working methodically and using the most
	Enzymes	molecules made up of lots of	appropriate equipment correctly,
		smaller building blocks. Enzymes	identifying the hazards and the
		are one class of proteins, and are	risks associated with those
		biological catalysts and speed up	hazards, writing a risk assessment,
		chemical reactions in living organisms. Their action can be	constructing results tables and recording data in a suitable
		affected by temperature, pH,	manner, evaluating their results
		enzyme concentration, substrate	and suggesting ways to improve
		concentration.	their experiments.

DNA and	The structure of water and its	Drawing biological molecules and
	properties, and how this is	identifying bonding types. Using
Inorganic	important for living organisms,	historical experiments to explain
Molecules	the roles of inorganic ions in living	our current knowledge – the
	organisms, the structure,	elucidation of semiconservative
	formation and functions of ATP,	DNA replication. Observational
	the structures of DNA and RNA	skills – looking at "everyday"
	and an overview of their	properties of water and trying to
	functions, replication of DNA by	use higher level explanations.
	semiconservative replication.	
Immunology*1	Introduction to infectious	Data analysis to assess
	diseases with examples, overview	effectiveness of
	of body defences (specific, broken	vaccines/treatments/drugs in
	down into humoral and cell-	preventing/treating infectious
	mediated, and non-specific),	disease.
	phagocytosis, roles of b cells, t	
	cells, helper t cells, cytotoxic t	
	cells, memory cells, plasma cells	
	in the specific immune response;	
	types of immunity and vaccines;	
	antigenic variability; HIV structure	
	and progression of the disease;	
	monoclonal antibody production	
	and use, specifically in ELISA as a	
	test for HIV.	
Exchange	The importance of SA:Vol for	Calculating SA:Vol, using
	exchange of substances within	potometers to measure
	organisms and with the	transpiration, calculating lung
	surroundings, features of an	volumes in humans using data
	effective exchange surface, the structure and function of the	from spirometers and peak flow
	following exchange surfaces: fish	meters, dissection and biological drawing skills. Applying knowledge
	gills, insects tracheoles, leaves,	of human lungs and gas exchange
	small intestine, human lungs.	to diagnose various lung diseases
	Adaptations of insects and leaves	and their risk factors, including a
	to reduce water loss. Digestion of	focus on assessing the reliability
	carbohydrates, proteins and	and accuracy of data. Use of
	lipids.	Spearman's rank correlation
		coefficient statistical test
Mass Transport	Haemoglobin structure and	Selecting sources and assessing
	function; oxygen dissociation	their reliability when researching
	curves including those in different	different examples of oxygen
	species; features of the	dissociation curves in different
	circulatory system; structure and	species; focussing microscopes;
	function of arteries, veins and	drawing biological images from
	capillaries; formation and	microscopes; dissection skills and
	function of tissue fluid; heart	drawing biological images from
	structure and the cardiac cycle;	specimens; using dissection tools
	transpiration and translocation.	safely; analyse data about risk
		factors (for CHD) and distinguish
		between correlations and causal

Y13	Populations in Ecosystems* ² & Biology Fieldwork Course Photosynthesis	Review of GCSE ecological terminology with introduction of A Level words: niche, biome, carrying capacity; study if abiotic and biotic factors and their impact on population sizes with predator-prey relationships and bacterial growth curves as specific examples; theory of different ecological sampling techniques; succession, conservation, in situ introduction to various biological organisms e.g. limpets, moss, lichen, holly leaf miner, xerophytes, freshwater invertebrates.	relationships; Student's T test to disprove a null hypothesis; assess quality of evidence (for translocation). Understanding and using logarithmic scales, carrying out various ecological sampling techniques (random sampling, transects, mark-release- recapture), evaluating the limitations of each technique, choosing and using statistical tests to analyse experimental data, writing methods, identifying and controlling variables, using a range of equipment to monitor abiotic factors, writing risk assessments, chromatography, drawing results tables, carrying out own research, using dichotomous keys to identify and classify organisms, energy transfer calculations, using choice chambers. Opportunity to meet all CPAC in
Y13 Teacher A	Photosynthesis	Overview of the flow of energy through ecosystems; compensation points; role of ATP in energy transfers; leaf structure; chloroplast and photosynthetic pigments structure and function; role of REDOX reactions in photosynthesis; light dependent reactions including photolysis, chemiosmosis, photophosphorylation; light independent reactions including Calvin cycle and production of various carbohydrates using glucose; limiting factors for photosynthesis.	Opportunity to meet all CPAC in RP7: chromatography; additional opportunities to write risk assessments, evaluate various methods for an investigation; selecting sources and assessing their reliability when researching different examples of the products of photosynthesis; drawing complex graphs with curved lines of best fit; calculating rate oxygen production from experimental data; essay skills in Biology.
	Nutrient Cycles ^{*1} Responses for Survival	Carbon cycle reminder from GCSE including production of compost; nitrogen cycle including the bacteria involved; phosphorous cycle; natural and artificial fertilisers; eutrophication, indicator species. Phototropism; gravitropism; IAA and other plant hormones; taxes and kinesis; reflex actions and the neurones involved; resting and	Identify soil invertebrates using a key; aseptic technique; writing risk assessments; essay skills in Biology. Contributions of many scientists to our understanding of plant hormones; identifying and controlling control variables; risk
		action potential and the roles of ion channels and the Na ⁺ K ⁺ pump; factors that affect the speed of action potentials; the all or	assessments; Student's T test; standard deviation; percentage change; writing conclusions and

		nothing principle of action	avaluations, appartunity to most
		nothing principle of action potentials; the refractory period.	evaluations; opportunity to meet all CPACs in RP10.
	Describerto		
	Receptors to	Generator potentials; Pacinian	Dissection skills; using sharp
	Effectors	corpuscles; rods and cones in the	instruments safely; presenting
		eye and the structure of the	skills; selecting sources and
		retina; control of heart rate	assessing their reliability when
		involving chemoreceptors and	researching different examples of
		baroreceptors; structure and	drugs which affect synapses.
		function of synapses; the effect of	
	+ +1	drugs on synapse function.	
	Muscles ^{*1}	Macro and micro structure of	Using microscopes with oil
		muscle; neuromuscular junctions;	immersion lenses; drawing
		mechanism of muscle	biological images; modelling
		contraction; slow and fast twitch	muscle function and analysing
		muscle fibres.	models.
	Homeostasis	Negative feedback,	Presentation skills; selecting
		thermoregulation in endotherms	sources and assessing their
		and ectotherms; blood glucose	reliability when researching
		regulation by insulin, glucagon	different examples of endotherms
		and adrenaline; second	and ectotherms; dissection skills;
		messenger pathways; diabetes;	using sharp instruments safely;
		kidney structure and function	calibration curves; risk
		including Bowman's capsule,	assessments; using colourimeters;
		proximal convoluted tubule, loop	referencing research; handling
		of Henle, distal convoluted	biological specimens
		tubule; collecting duct; role of	appropriately.
		ADH in regulation of blood water	
		potential.	
Y13	Ecology Recap	Review of Y12 Populations in	Review of Y12 Populations in
Teacher		Ecosystems topic post Fieldwork	Ecosystems topic post Fieldwork
		Course.	Course.
В	Nutrient	Carbon cycle reminder from GCSE	Identify soil invertebrates using a
	Cycles ^{*1}	including production of compost;	key; aseptic technique; writing risk
		nitrogen cycle including the	assessments; essay skills in
		bacteria involved; phosphorous	Biology.
		cycle; natural and artificial	
		fertilisers; eutrophication,	
		indicator species.	-
	Inheritance	Monohybrid and dihybrid	Drawing genetic diagrams;
		inheritance; codominance;	interpreting pedigree diagrams;
		inheritance of blood groups; sex-	chi ² statistical test; use the Hardy-
		linked genes; autosomal linkage	Weinberg calculation.
		and the effect of	
		phenotype/genotype ratios;	
		epistasis; gene pools; allele	
		frequencies; Hardy-Weinberg	
		formula; continuous and	
		discontinuous variation and their	
		causes; natural selection;	
		stabilising, directional and	
		disruptive selection; allopatric	

	and sympatric speciation; genetic drift.	
Respiration	Structure of the mitochondria, stages of respiration to include glycolysis, link reaction, Kreb's cycle, oxidative phosphorylation; role of ATP and REDOX reactions in respiration; anaerobic respiration in animal, plant and fungal cells.	Using respirometers; working safely and ethically with living organisms; modelling respiration and evaluating these models; comparing respiration and photosynthesis; essay skills in Biology; opportunity to meet all (except 2a+b) CPACs in RP measuring the rate of respiration in yeast cells using dehydrogenase.
Muscles ^{*1}	Macro and micro structure of muscle; neuromuscular junctions; mechanism of muscle contraction; slow and fast twitch muscle fibres.	Using microscopes with oil immersion lenses; drawing biological images; modelling muscle function and analysing models.
Gene Expression and Technology	Causes and types of gene mutation; regulation of transcription by transcription factors, oestrogen and siRNA; totipotent and pluripotent stem cells; sources of stem cell; cell differentiation; epigenomics; oncogenes and tumour suppressor genes; genome sequencing; proteomics; recombinant DNA; in vivo cloning; transformation; PCR; genetic screening using DNA probes and DNA hybridisation, genetic fingerprinting.	Aseptic technique; using sharp instruments safely; ethics of genetic technologies in medicine and research; interpreting data on gene expression; essay skills in Biology; understanding the contributions of many scientists to genome sequencing and how methods have changed over time; ethics of genetic screening.

*1 These topics are taught once, by whichever teacher has the rotation lesson on their timetable.

*2 This topic is split between teachers A and B to ensure its completion prior to the field course.